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Abstract. Othello is an interesting game in the domain of artificial intelligence due to a some-
what unexpected level of complexity. Simplified versions of the game on 6x6 and 4x4 versions
of the board have been solved, but no full solution has been found for the classic 8x8 board
and above. This letter surveys a number of state-of-the-art approaches to Othello game playing,
including CNNs and adversarial models. Performance is measured against computational effi-
cacy, model memory size, and Monte Carlo simulation against a benchmark greedy algorithm.
A further investigation into heuristics is also presented. Results indicate that the adversarial
models outperform the CNN but is highly dependant on the heuristics adopted.

Keywords: Othello, Reversi, Mini-max, alpha-beta pruning, Scout, Artificial Neural Network,
CNN

1 Introduction

Othello is a modern adaptation of the older original game of Reversi1. In the domain of artificial
intelligence, it is considered an interesting game due to its perceived unsuitability for Neural Net-
works. It was previously assumed to be a somewhat trivial game to solve via analytical methods. In
2002, an influential survey by Van Den Herik predicted that the game of Othello would be solved by
the year 2010 [1]. While smaller versions of the game board have been solved, no perfect solution
exists for the classic 8×8 board.

Game playing is an area of AI where an agent is tasked with maximising its score in a specified,
dynamic game environment against a human or other game playing opponent. Game playing re-
search against human opponents is separable into two distinct research regimes, the study of human
thought processes and inferences, and the transformation of these processes to be represented in a
digital setting [2].

As Othello is considered a poor candidate for Neural Networks, it is an interesting environment
to utilise and test more classical approaches to game playing in AI. Finding advancements in ef-
fective game playing strategies in Othello could potentially lead to the discovery of an increased
performance general game playing schema. In this letter, the implementation, testing and analysis
of various adversarial search methods alongside CNNs is undertaken [3, 4, 5, 6].

The remainder of this paper is outlined as follows. Section 2 discusses the Othello board game
and other preliminaries. Section 3 and Section 4 discuss a number of different game playing strate-
gies. Section 5 discusses the evaluation setting for the algorithms, and the results produced. Section 6
examines other algorithms which were not tested in this paper. Section 7 concludes the paper.

1https://www.mastersofgames.com/rules/reversi-othello-rules.htm

https://www.mastersofgames.com/rules/reversi-othello-rules.htm
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2 Othello Game

Othello is a two-player, deterministic, zero-sum (i.e. the total reward is fixed and the player’s score
is negatively related) board game which has perfect information[1]. The game is played on an 8x8
board using 64 dual colored discs. Each disc is colored black on one side and white on the other.
Initially, the entire board is empty except the central 4 squares. In the main diagonal, white discs are
kept on d4 and e5, and on the other diagonal black discs are kept i.e. on e4 and d5. This initial board
configuration is shown in Figure 1a.

(a) Initial game board with highlighted tentative
move.

(b) Game state after tentative move completed.

Fig. 1: Example first game move.

The game begins with player black (henceforth referred to as just black or white) making the first
move. A legal move is made by placing a disc on an empty square so that in at least one direction
from the square played on, there is a sequence of one or more of the opponents discs followed by
the player’s own disc [1]. The opponent’s discs, in such a sequence, are then flipped and become the
current player’s color. For example, if the player moves e6(as highlighted in Figure 1a), the white
disc on e5 will be turned over to black (as highlighted in Figure 1b).

If a player cannot make a legal move, they must forfeit their turn. The game ends when neither
player can make a legal move, i.e. either when all 60 squares are filled or, if squares are left, when
neither player can legally place their disc in one. The player with most discs on the board wins, or if
the number of the discs are equal, then the game is deemed as a draw. The proceeding sections will
outline adversarial methods and CNN approaches to Othello game playing.

3 Adversarial Search Othello

One of the most rudimentary and effective Artificial Intelligence algorithms is based on adversarial
searches. Adversarial search is a search in which we plan ahead of the environment and other agents
that are planning against us. Since in this environment (game) more than one agent is searching for
a solution in the same search space, each agent needs to consider the action of another agent as it
affects their performance. Games where multiple agents with conflicting goals that are exploring
the same search space (Othello Board) for the solution are called adversarial searches. Othello is
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a Deterministic Game with Perfect Information. This means it follows a strict set of rules with no
randomness. Agents can also see the complete board. Agents have all the information about the
game and they can see each other move also. The game is defined with the following variables:

– Initial State: Specifies how game is set up, we run our tests with varying random board states as
initial states, to measure success of search in start, middle and end game scenarios.

– Players: White and Black or 1 and -1. The player pieces on board and its position on the board
aids in evaluating state of maximizing player.

– Action: Legal moves in state space.
– Result: Transition Model, specifies result of moves in state space. Such as what are the other

player’s moves available now.
– Terminal State: Game ends once all empty spaces have been filled or player has no more legal

moves left.
– Utility: Utility function assigns a numeric value to terminal states based on rules of the game.

3.1 Heuristics

The evaluation function, also known as the heuristic or the static evaluation function, is used to
assess the state of the environment for the player. This evaluation allows a player to traverse the
search space to their benefit over time. In Othello, there are several different factors that determine
favorability of a position. Two main papers were used to create the aggregate heuristic function
[7, 8]. A brief summary of the heuristics follows:

– Coin Party - Difference in coins between maximising and minimising player.
– Corner Occupancy - Corners are the most valuable pieces on the baord. This heuristic calcu-

lates number of corners occupied
– Corner Closeness - Squares adjacent to corners are a huge disadvantage as it gives the opponent

the opportunity to capture corner. Therefore, we avoid capturing close corner squares.
– Mobility - Measures how many moves a player has. Restricting opponents mobility restricts

their reward paths.
– Stability - Measure how vulnerable coin is to being flanked.
– Frontier Disks - Discs adjacent to empty squares have a greater chance of being flipped by

opponent. Therefore, we minimize the number of frontier discs we have.

The two papers also proposed a separate utility function, a statically weighted board for each coin
position, the heuristic is calculated by adding weights of the squares. The second paper’s weighted
matrix performed better than the second one. This could most likely be due to higher weights on cor-
ner, given that most games won had the winning player with majority corner pieces. We also played
the heuristic against each other at a depth of 1 to assess their success relative to each other. Table 3
shows the table of the averaged relative win percentage. However, playing at different board states,
it could be seen that some heuristics were more effective in start game than end games scenarios as
seen in Figure 4.

3.2 Search Algorithms

MiniMax Theorised in 1928 by John von Neumann [6], it is the heart of most search algorithms for
Sum-Zero games. It is used for fully observable and deterministic games such as Othello. but has also
been extended to more complex games and to general decision-making in presence of uncertainty.
Minimax is a Depth-First Search recursive algorithm. The search tree is made of states that arise from
the respective players’ turn. The states are then evaluated with respect to the maximising player.
During Max Player’s turn, it chooses the move with the highest evaluation with the Min Player
choosing the move with the lowest evaluation.
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A-B Pruning Alpha-Beta [4] was published after Minimax to decrease the number of nodes that
are evaluated by the minmax algorithm. It stops evaluating a move when it finds the move to be
worse than an already examined move. Such moves need not be evaluated and are hence cut of
from the search along with their subsequent children. Alpha-Beta returns the same move but prunes
away branches that have no influence in final result. This pruning is facilitated by keeping track of
parameters alpha and beta which create the cut-offs, and prevent the recursion through that node.

Fig. 2: A-B Pruning Example [9]

NegaScout (Principle Variation Search) NegaScout was invented by Alexander Reinefeld decades
after Alpha-Beta pruning. NegaScout is a negamax algorithm that can be faster then alpha-beta
pruning. It dominates by never examining a node that can be pruned by alpha-beta. However, it
relies on accurate node ordering, otherwise it performs equally or worse than A-B pruning due to re-
searching of nodes on proof fails. Move ordering is often determined by previous shallower searches.
NegaScout produces more cutoffs than alpha-beta with the assusmption that the first explored node
is the best (principle variation). Then, it tries to prove it by searching remaining nodes with a null
window (scout window) which is faster than with a regular alpha-beta window. If the proof fails,
first node wasn’t the principle variation and the algorithm continues as normal alpha-beta.

If our assumption of the principle variation being the best move, we save time by searching every
move other than the best move with a null window.

s c o r e := −pvs ( c h i l d , depth −1, −a lpha −1, −a lpha , −c o l o r )

-alpha-1 and -alpha are the alpha beta values we pass to the next recursion. Since width of the
window is only 1, the search will always fail if:

– It fails below alpha - the move is worse than we already have, so we ignore it
– It fails above beta - move is too good to play, so we can ignore it
– Otherwise, we need to do a new search properly

The three search algorithms were applied to the game of Othello and played against a decision
rule AI that played random moves and took the corner pieces if it had a chance. The heuristic is
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rendered less effective since the opponent is not following the same heuristic, but it would demon-
strate how well the heuristic plays in guiding the game to its advantage against a random player. In
the results section we demonstrate the efficiency of the algorithms in terms of nodes visited during
a whole game and we demonstrate effectiveness of different heuristics when they are played against
each other.

4 Convolutional Neural Network

Machine Learning, and particularly Deep Neural Networks (DNNs) and Convolutional Neural Net-
works (CNNs), have seen a renaissance in the last decade. The introduction of techniques such
as skip connections and the Rectified Linear Unit (ReLU) activation function have allowed deeper
Neural Networks to be built. These have yielded large performance gains in the imaging areas of
classification, object localisation, object detection, and image segmentation.

The power of CNNs lie in their ability to capture complex spatial patterns and have even been
used in the landmark success of the AlphaGO program, achieving super-human performance [10].
Seeking to utilize these capabilities, Liskowski et al developed a DNN with 8 hidden layers to per-
form move prediction on the game of Othello [3]. To train their CNN, the authors used WThor,
the French Othello League game dataset. This comprised 119,339 games between expert players,
resulting in 6,874,503 board-move combinations, 4,880,431 of which were unique. On testing, the
proposed solution achieved state-of-the-art move prediction, outperformed all 1-ply player algo-
rithms, and also defeated the 2-ply version of Edax, quoted as ”the best open-source Othello player”
[3] at the time of publishing (2018).

Layer Output Size
Conv1 8×8×64
Conv2 8×8×64
Conv3 8×8×128
Conv4 8×8×128
Conv5 8×8×256
Conv6 8×8×256
Conv7 8×8×256
Conv8 8×8×256

fc1 1×128
fc1 1×60

Table 1: The 10 layers of the CNN presented
in [3] and replicated in this research.

Loss function Cross-Entropy
Optimizer Adam

Learning rate 1×10−3

Weight decay 0.01
Table 2: The network and training parameters
used to train our CNN move predictor.

Given the huge success of the aforementioned CNN, it serves as an ideal AI against which
to compare some of the more classical approaches, such as tree-search and scout. In this work,
we develop a CNN inspired by that presented in [3]. The design of the implemented network is
laid out in Table 1, while further implementation details are presented in Table 2. The network
was built in PyTorch, while fastai was used for data-loading and training. Each Conv layer in the
network is composed of: 1) A 2D convolution with a 3x3 Kernel, stride=1, and zero-padding 2)Batch
Normalisation 3) ReLU activation.

It is worth noting that no max-pooling is performed to keep the feature maps at an 8x8 resolution.
To train the network, it was desired to use the same WThor dataset used in [3]. This however was

http://www.ffothello.org/informatique/la-base-wthor/
https://github.com/abulmo/edax-reversi
https://docs.fast.ai/
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Fig. 3: Six example game boards with red denoting location of current player’s disks, green for
opponent and black are unoccupied. Each board has as a title the game move predicted by the CNN.

not possible without paying to access the Win-Test software. Instead, another database containing
1569 games from 5 years was used. This resulted in 89,823 board-move combinations. To load these
into the network, 3-channel images of size 8x8 were used. The first layer contains 1s where Player
1’s pieces lie, with zeros everywhere else. The second layer contains 1s where Player 2’s pieces lie,
with zeros everywhere else. The third layer served as an optional matrix where legal moves could be
embedded. This however was not ultimately used and was thus left empty. Examples of these boards
are shown in Figure 3. Training required just 9 epochs, achieving a top accuracy of 48%.

5 Evaluations

5.1 Testing Environment

In creating a suitable bookmarking algorithm in which to compare the performance of all game
playing strategies, a greedy algorithm was identified. This greedy algorithm, for each move, will
always pick a corner tile if available or else picks the move from a list of legal options, which
maximises the game score for the current turn. For each testing scenario, a Monte Carlo experiment
was conducted for each operating condition (1000 runs per point). All simulations were built in a
Python 3 environment, using the Numpy linear algebra tool.

Evaluations were conducted over a number of metrics and operating conditions. The first mea-
sures the expected win rate of the target strategy against the benchmark greedy algorithm. As the
operating condition, the game turn start point was varied (i.e. for start point T = 0, it is a normal
game, for start point T = n, the game is initialised at a random and legal game board state n turns
in). The motivation for testing the algorithms under different start points are two-fold. 1) Othello is
a deterministic game which makes Monte Carlo experiments trivial when the game starts from the
same start position as the same game result will be achieved under every simulation run (given that
the algorithms are also deterministic). 2) It is known that different strategies preform to different de-
grees of effectiveness for various points in the game, i.e. different strategies perform better or worse
for beginning, middle or late game.

The second evaluation inspects the number of nodes considered by each of the adversarial search
algorithms. This is a good metric to deduce the relative computational intensity for each algorithm.

http://www.win-test.com/
http://www.othbase.net/databases/databases.html?fbclid=IwAR3uxoQRK_WduNkkRKHfnkWLWkVqTrjEtb7gs1ot3uCSznd93EcMt3b0R84
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Each adversarial game playing strategy plays 1000 games against the greedy algorithm. The mean
number of nodes considered (with a certainty interval of one standard deviation) is then recorded.

5.2 Results

Table 3 outlines the relative win rate for various heuristics played against one another. Figure 4
shows results of each algorithm against a standard Greedy game player benchmark. Figure 5 shows
the expected number of nodes visited by the adversarial algorithms per game, giving a mutual metric
to compare computational overhead. The CNN cannot be compared under this metric as it adopts an
empirical learning strategy rather than an adversarial search scheme.

All Coin Party Stability Frontier Discs Weight Matrix Corner Closeness Corner Mobility
All 0.46 0.19 0.44 0.45 0.18 0.61 0.36 0.44
Coin Party 0.81 0.48 0.78 0.75 0.43 0.87 0.52 0.62
Stability 0.56 0.22 0.77 0.66 0.35 0.85 0.44 0.54
Frontier Discs 0.55 0.25 0.34 0.44 0.19 0.64 0.22 0.29
Weight Matrix 0.82 0.57 0.65 0.81 0.48 0.81 0.64 0.69
Corner Closeness 0.39 0.13 0.15 0.36 0.19 0.45 0.13 0.19
Corner 0.64 0.48 0.56 0.78 0.36 0.87 0.51 0.55
Mobility 0.56 0.38 0.46 0.71 0.31 0.81 0.45 0.5
Table 3: Heuristic vs. Heuristic. Statically assigned Weight Matrix outperforming individual and
aggregate heuristic.

Fig. 4: Increasing depths resulted in more wins.
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Fig. 5: Total Nodes Visited for a whole game, at random board states, depths and search Algorithms.

5.3 Discussion

Results of the total nodes visited experiment for the adversarial methods show significant improve-
ments in relative complexity can be achieved by the adoption of the Scout and A-B Pruning algo-
rithms. While all approaches grow exponentially with depth, the growth rate is sufficiently less for
the Scout and A-B pruning methods to allow for a greater search depth with any given computational
limitation.

When considering the relative computational performance against the greedy algorithm, perfor-
mance for all adversarial methods increases with depth. This is an unsurprising result as the ability
to look further into the future provides more context for the game playing agents to make opti-
mal decisions. The CNN AI, somewhat surprisingly, preforms poorly. Given that CNNs typical are
considered very suitable for pattern finding, the result is unexpected. The CNN has the further dis-
advantage in that he it requires the storage of trained weights in order to make predictions. For our
CNN, the model was approx. 10 MBs in size. In contrast to the adversarial methods which require
trivial amounts of storage space. Model size and computational efficiency are important properties
of any AI, especially in contexts such as mobile phone applications.

6 Other Algorithms

6.1 MTD(f)

Since Negascout, there have been several other relatively better performing algorithms that have
been developed, such as MTD(f) [11], which derives its efficiency from zero-window alpha beta-
searches and uses a transposition table to store and retrieve previously searched portions of the
tree in memory, reducing space complexity. However it requires a transposition table to work well.
Otherwise, the sub-tree has to be re-expanded.
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Transposition Tables To further improve performance of search algorithms, it is imperative to
reduce repeated computations by recording already seen information. Since same position and hence
subtree, is likely to be re-visited multiple times. This table would typically store score, search depth
and best move and whether it’s an upper or lower bound.

Iterative Deepening (IDDFS) Iterative deepening Depth-First Search is a widely used state search
strategy within which a depth-limited version of DFS is run repeatedly with increasing depths until
the goal is found. IDDFS is optimal, like Breadth-first search, but uses much less memory. It visits
nodes in the same order as DFS but the cumulative order is effectively Breadth-First. IDDFS also
provides good control of time, because results of previous iterations improve move ordering of new
iterations, critical for efficient searching.

6.2 Bayesian Othello

Lee and Mahajan propose a Bayesian framework for Othello game playing [12] which adopts a set
of 4 features/heuristics based off board mobility and board positions. Training games were labeled
turn-wise as a win or lose move. Although not described (or even mentioned) in the paper, an inverse
Wishart distribution must have been employed in conducting Bayesian inference on the unknown
parameters of the generative function. Bayesian inference adopts the likelihood function (along with
a presumed diffuse prior) to find parameters which makes the moves considered the most likely. The
authors publish the (presumed MAP) parameters identified.

For decision making, the authors choose the move which maximises the maximum Likelihood
(ML) ratio. This approach is consistent with the maximum likelihood principle [13], but ignores
information on the game known apriori (general) which is incorporated in the Maximum A Posteri
(MAP) estimate.

The Bayesian algorithm performs well in general, competing in a number of world Othello
competitions. Besides this, it is sensitive to feature selection and training data alongside the problem
of accurately describing individual moves as win or lose.

6.3 Reinforcement Learning

Reinforcement Learning (RL) is is an AI strategy concerned with finding an optimal policy to max-
imise a given reward for any particular situation. Jan van Eck and van Wezel proposed in 2008 using
RL to play the game Othello [14]. The motivation for RL was that to maximise payoff in a given
game, the decision-maker might have to sacrifice immediate payoff for a greater future payoff (a
task that the implementation of the CNN described in this paper cannot explicitly do). The approach
adopts Q-learners alongside Neural Networks to build the model. Results found that the RL model
was capable of beating human opponents along with a number of rudimentary mobility and decision
rule AI. Unfortunately no testing against existing methods was outlined.

7 Conclusions

This work has presented an investigation into the game playing agents for the game Othello. There
are many approaches to AI design in literature and this report has presented an overview on the
most popular and effective. Results show that adversarial methods consistently outperform Neural
Networks but are very sensitive to the choice of heuristics. An analysis of various heuristics give
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insight into the overall proficiency of each. Each heuristic was found to give variable performance
depending on what turn of the game is being considered.

It has been found that Neural Networks are not well suited to playing a game such as Othello.
The issue lies with the fact that the network cannot make judgements on how a move will alter
the game or affect the opponent. Rather, they just learn what previous players have done in such a
position. In some ways, this may actually have some intelligence embedded, since the player making
the move would have thought their decision through. Again this brings to light how Neural Networks
are only as good as the data they are trained on. The more and higher quality data one can train a
network on, the better it will perform. Perhaps if we had been able to use the WThor database, the
CNN would have performed better in the evaluations.

Future work in CNNs include increasing the information provided to the training model. Player
skill should be accounted for when training. Methods to decide when a move is good or bad should
be investigated further (our method is rather primitive). Investigations into building hybrid AIs which
use different strategies for beginning middle and end games would also be intriguing.
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